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ABSTRACT 
With the rise in big data and analytics, machine learning is 

transforming many industries. It is being increasingly employed 

to solve a wide range of complex problems, producing 

autonomous systems that support human decision-making. For 

the aircraft engine industry, machine learning of historical and 

existing engine data could provide insights that help drive for 

better engine design. This work explored the application of 

machine learning to engine preliminary design. Engine core-

size prediction was chosen for the first study because of its 

relative simplicity in terms of number of input variables 

required (only three). Specifically, machine-learning predictive 

tools were developed for turbofan engine core-size prediction, 

using publicly available data of two hundred manufactured 

engines and engines that were studied previously in NASA 

aeronautics projects. The prediction results of these models 

show that, by bringing together big data, robust machine-

learning algorithms and automation, a machine learning-based 

predictive model can be an effective tool for turbofan engine 

core-size prediction. The promising results of this first study 

paves the way for further exploration of the use of machine 

learning for aircraft engine preliminary design. 
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INTRODUCTION 
In today’s marketplace, rapid turnaround time of the 

investigation of new design concepts or technologies can be a 

powerful competitive advantage within the aircraft engine 

industry. To minimize risk, technological improvements of 

aircraft engine are generally made incrementally, drawing 

heavily from past experiences and lessons learned. Engine 

companies have generated and collected large amounts of data 

over the years. The big data, from various sources such as the 

database of currently manufactured engines and those of 

previously completed development projects, is a valuable 

resource of intelligence that can support new engine 

development. With increasing computational power, 

employing machine learning to mine these data can provide 

valuable insights and brings high levels of efficiency to engine 

preliminary design.  

While the use of machine learning for aircraft engine 

preventive maintenance has been studied by a number of 

researchers [1 and 2], its use for engine design has not been 

explored. In this work, supervised machine-learning algorithms 

were employed to find patterns in the database of two hundred 

manufactured engines and engines that were studied previously 

in various NASA aeronautics projects. Models (or analytics 

tools) to predict core sizes of axial-compressor turbofan engines 

that are being considered were built. The objective was to 

determine if machine learning-based predictive analytics could 

be an effective tool for turbofan engine core-size prediction. To 

be able to predict engine core size rapidly and accurately in the 

design space exploration would facilitate engine core 

architecture selection in the early stages of engine development. 

In this work, engine core size (h) is defined as: 

 

h = high-pressure compressor last-stage blade height 

 

The important aspect of this work was the extensive use of 

manufactured engine data (70% of the database). These engines 

span the era from the mid-1960s to mid-2010s. The database 

captures over half-a-century of engine technology 

improvements and lessons-learned, which injects realism to the 

predictive models. 

 

TURBOFAN ENGINE CORE SIZE 
The continuous drive for ever more efficient and quiet 

aircraft has resulted in the evolution of aircraft gas turbine 

engines from the earliest turbojet engines to today’s turbofan 

engines with bypass ratios (BPR) of 6 to 12. The overall 

pressure ratio (OPR) of gas turbines has increased over time to 

improve thermodynamic efficiency. It is likely that the trend 

toward higher BPR and OPR engines will continue in the 

foreseeable future. Despite its benefits, the combination of 

increasing BPR and OPR will shrink the core size of high-

pressure compressor (HPC), which can lead to rapid decrease 

of HPC efficiency due to increased sensitivity to tip clearance 

and airfoil manufacturing tolerances. A rule of thumb for the 

current-state-of-the-art engine design is that the HPC last-stage 

blade height should not be less than 0.5 inch [3], to avoid this 

https://ntrs.nasa.gov/search.jsp?R=20190026569 2020-05-09T18:01:44+00:00Z
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efficiency penalty. Figure 1 shows the efficiency penalty vs. 

HPC last-stage blade height of a NASA N+3 technology 

reference turbofan engine [4].  

 

 
 

Figure 1. HPC efficiency change vs. last-stage blade height 

     of a NASA N+3 reference turbofan engine 

 

MACHINE LEARNING ALGORITHMS 
 Machine learning is a branch of artificial intelligence that 

uses statistical technique and mathematical algorithms to enable 

a machine to learn from data, to analyze data patterns, and to 

make decisions with minimal human intervention. In this work, 

two machine-learning predictive models were developed for 

engine core-size classification, i.e. to label engine core size as 

acceptable, unacceptable, etc.. Three different supervised 

machine-learning classification algorithms were used in these 

models. They are: k-nearest neighbors (KNN), support vector 

machines (SVM), and artificial neural network (ANN).  

 

K-Nearest Neighbors (KNN) classifier 

 KNN algorithm [5, 6] estimates how likely a data point 

belongs to a certain group based on what group its k nearest 

neighbors are in, where k is an integer value specified by the 

user. Each data point is weighted by the inverse of its Euclidean 

distance from its nearest neighbors. The optimal k is computed 

iteratively and the k value that give the lowest misclassification 

errors over the training dataset is selected. A grid-search routine 

was used to determine the optimal k value. KNN was 

implemented via the Python Scikit-Learn [7] library class, 

KNeighborsClassifier. 

 

Support Vector Machine (SVM) classifier   

 A SVM [5, 8] classifier performs classification by finding 

an optimal hyperplane that maximizes the margin between the 

two classes. The hyperplane is a linear separator for any 

dimension. For nonlinearly-separated classes, a data 

transformation by a kernel function would be required. Kernel 

is a mathematical function that performs nonlinear 

transformation of data so that they can be classified by a linear 

hyperplane. In this work, a Gaussian (or radial basis function) 

kernel was used. It is a similarity function that measures the 

“distance” between a pair of data points and is defined as: 

 
 

𝐾(𝑥, 𝑥′) = exp(−ϒ‖𝑥 − 𝑥′‖2) 
 

 where ‖𝑥 − 𝑥′‖ is the Euclidean distance between two data 

points x and x’. And ϒ (gamma) is a parameter that controls the 

tradeoff between error due to bias and variance in the model. 

Training SVM involves the minimization of the cost (or error) 

function [3, 6]: 

1

2
‖𝑤‖2 + 𝐶∑𝜉𝑘

𝑛

𝑘=1

 

subject to the constraint: 
 

𝑦𝑘(𝑤
𝑇𝑥𝑘 + 𝑏) ≥ 1 −𝜉𝑘 and𝜉𝑘 ≥ 0  

 
where  𝑤 = weight vectors 

     𝐶 = penalty parameter 

     𝜉𝑘 = slack parameters for handling non-separable data 

      𝑇 = transpose (of a matrix) 

     𝑏 = a constant 

     𝑥𝑘 = training data points 

     𝑦𝑘  = training data class labels 
 
The penalty parameter C is a parameter in the cost function that 

controls the tradeoff between misclassification error and 

separation margin. Both ϒ and the C have to be specified. A 

grid-search routine was used to determine the combination of ϒ 

and C that gave the lowest misclassification error.  SVM was 

implemented via the Python Scikit-Learn library class, SVC.  

 

Artificial Neural Network (ANN) classifier 

 ANN [5], sometimes called multiplayer perception, is a 

machine learning algorithm that attempts to mimic how the 

human brain processes information. An ANN is organized into 

input, hidden, and output layers. The hidden layer is composed 

of ‘neurons’, which process input variables and output the 

response variables, using activation functions. For this work, 

ANN consisted of one input layer, one hidden layer, and one 

output layer. A hyperbolic tangent (𝑡𝑎𝑛ℎ) function was used for 

the activation functions in the hidden layer, defined as: 
 

𝑡𝑎𝑛ℎ(𝑥) =
1 −𝑒−2𝑥

1 + 𝑒−2𝑥
 

 
where x = weighted sum of input engine parameters 

 

A grid-search routine was used to determine the regularization 

parameter (α) and the number of ‘neurons’ (Ne) in the hidden 

layer that gave the lowest misclassification error. ANN was 

implemented via the Python Scikit-Learn library class, 

MLPClassifier.  

 

ENGINE DATABASE 
The basic engine architecture in this study was an axial-

compressor turbofan. The engine database consisted of 139 

manufactured engines [9 to 15] and 61 engines that were 

studied previously in various NASA aeronautics projects. The 

NASA engine data were the system-study results for various 
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NASA aeronautics projects [16 to 22]. The engine database is 

shown in Appendix A. 

 

PREDICTIVE MODELS 
 Both 2-class and 3-class models were developed to predict 

engine core sizes in terms of classes, using the three machine 

learning algorithms described in the previous section. Core 

sizes of all the manufactured engines were assumed to be 0.5 

inch or larger. For the NASA engines, core sizes were classified 

according to the blade-height data obtained from the system 

studies. Python programming language was used to develop 

both models.  

 

Input engine parameters for both predictive models are: 
 

 OPR at sea level static condition 

 BPR at sea level static condition 

 Sea level take-off thrust 

 

The sea-level flight condition was chosen, to be consistent with 

the engine database (Appendix A). The database was built 

based on publicly-available engine data. 

 

The output is: 
 

 Engine core size class label: 0, 1, or 2 

 

2-class predictive model 

 This is a binary classification problem in machine learning. 

For this model, the engine core sizes were categorized into two 

classes: 0 and 1 (correspond to acceptable and unacceptable 

core sizes), according to the engine core size (h), as shown in 

Table 1. 
 

Table 1 – Categories of the 2-class model  

 
 

Training and building the predictive models involved three 

steps: dataset preparation, preliminary training and cross-

validation of the models, and building, training, and evaluation 

of the final model 

 

 Dataset preparation  

The engine dataset was shuffled randomly (using pseudo-

random number generator) and divided into two datasets: the 

training set and the testing set. The training set was used to train, 

cross-validate, and build predictive models. The testing set 

consisted of the remaining engines that were unseen by the 

predictive models, and was held out for the final evaluation of 

the predictive models. The training-testing dataset split is 

depicted in Table 2. 

 

 Preliminary training and cross-validation of the models 

During preliminary training, three predictive 2-class models 

were developed using KNN, SVM, and ANN algorithms, 

respectively. This was done to identify the algorithm with the 

best accuracy for training a classifier to distinguish acceptable 

and unacceptable core sizes. The algorithm with the best 

performance was then selected to build and final-train the 

predictive model. 

 

Table 2 - Training-Testing dataset split for the 2-class model  

Core size 
Training dataset 

(no. of engines) 

Testing dataset 

(no. of engines) 

h ≥ 0.5” 116 38 

h < 0.5”   34 12 

Total 150 50 

 

Within the training dataset (150 engines), a five-fold cross-

validation procedure was used to conduct a preliminary 

evaluation and to fine-tune the models. The training dataset was 

randomly split into 5 groups: 4 groups were used to train the 

models and 1 group was used to cross-validate the models. This 

process was repeated 5 times so that each of the 5 groups got 

the chance to be used for training and validation. The 

performance measure was then the average of the values, in 

terms of the means and standard deviation, computed in the 

iteration loop. 

 

 Building, training, and evaluation of the final model 

 The best algorithm is identified in the previous step was 

used to build and train the final predictive model. Cross-

validation was no longer needed for this step, i.e., all 150 engine 

data were used to build and train the predictive model. The 

model was then used to predict the core sizes of the engines in 

the testing dataset (50 engines), and the results were compared 

with the testing dataset.  

 

3-class predictive model 

 In this model, the engine core sizes were categorized into 

three classes: 0, 1, and 2 (correspond to acceptable, acceptable 

with improved manufacturing technologies, and unacceptable, 

core sizes) according to the engine core size (h), as shown in 

Table 3. The training-testing dataset split is depicted in Table 4. 

 

Table 3 – Categories of the 3-class model  
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Table 4 - Training-Testing dataset split for the 3-class model  

Core size 
Training dataset 

(no. of engines) 

Testing dataset 

(no. of engines) 

h ≥ 0.5” 116 38 

0.5” > h > 0.41” 17 6 

h ≤ 0.41” 17 6 

Total 150 50 

 

Similar to the 2-class model, the testing dataset consisted 

of the 50 engine that were unseen by the predictive models, and 

was held out for final evaluation of the predictive tools. Dataset 

preparation, model building, training, and evaluation 

procedures were similar to those for the 2-class model. 

 
PREDICTIVE RESULTS 
2-class predictive model 

 For this model, the training dataset consisted of 116 

engines with h ≥ 0.5” and 34 engines with h < 0.5”. Using a 

grid-search routine, the parameters that gave the lowest 

misclassification errors for the three algorithms were 

determined. They are shown in Table 5. 

 

Table 5 – Algorithms used and the parameters (2-class model)  
Algorithms Parameters 

KNN k = 4 

SVM C = 10, ϒ = 2.0 

ANN α = 0.001, Ne = 2.0 

 

The classification accuracy of the machine learning algorithms 

was defined as the number of correct predictions made as a 

percentage of all predictions made. And uncertainty was 

defined at 95% confidence interval, i.e. two standard deviations 

for normal data distribution. The preliminary training and cross-

validation results are shown in Table 6. 

 

Table 6 - Cross-validation results (2-class model)  
 

Algorithms 

 

Accuracy 

(mean) 

Uncertainty 

95% confidence interval 

(± 2 standard deviation) 

KNN 96% ±7% 

SVM 98% ±5% 

ANN 97% ±7% 

 

They show that SVM had the best accuracy and the lowest 

uncertainty. So, it was selected to build and final-train the 

predictive model.  

  

 The final predictive model, built with SVM algorithm, was 

then used to predict the engine core sizes in the testing dataset 

(the 50 engines unseen by the model). Performance metrics for 

final model evaluation are: 

 overall engine core-size prediction accuracy  

 unacceptable engine core-size (h < 0.5”) prediction 

accuracy  

 

To be able to predict unacceptable engine core-size is the main 

objective of the predictive tool. The results are shown in Table 

7.  

 

Table 7 - Final test results of the 2-class model  

 
  

 Overall, the 2-class model had an accuracy of 98%, with an 

uncertainty of 5%. More importantly, it predicted unacceptable 

engine core sizes with 92% accuracy. The results were 

compared with  the testing dataset in Table 8. It shows only one 

engine was misclassified. 

 

3-class predictive model 

 For this model, the training dataset consisted of 116 

engines with h ≥ 0.5”, 17 engines with 0.5” > h > 0.41”, and 

17 engines with h ≤ 0.41”. Using a grid-search routine, the 

parameters that gave the lowest misclassification errors for the 

three algorithms were determined. They are shown in Table 9. 

 

Table 9 – Algorithms used and the parameters (3-class model)   
Algorithms Parameters 

KNN k = 4 

SVM C = 55, ϒ = 0.5 

ANN α = 0.002, Ne = 4 

 

The classification accuracy of the three machine learning 

algorithms from the preliminary training and cross-validation 

of the predictive models are shown in Table 10. 

 

Table 10 - Cross-validation results (3-class model)  
 

Algorithms 

 

Accuracy 

(mean) 

Uncertainty 

95% confidence 

interval 

(± 2 standard deviation) 

KNN 91% ±12% 

SVM 91% ±11% 

ANN 91% ±7% 

 

 The cross-validation results show that the 3-class 

predictive models were less accurate than the 2-class model. 

This is because of insufficient core-size data to train the model. 
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Table 8 

 

Comparison of predicted results with testing dataset – Two-class model 

 

 
 
 

 

 

h ≥ 0.50” h < 0.50” ←  misclassification 
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The 3-class model is more complex and requires more data for 

training. The three algorithms show the same accuracy; 

however, the ANN algorithm had the lowest uncertainty. The 

final predictive model, built with ANN algorithm, was then 

used to predict the core sizes of the engines in the testing dataset 

(the 50 engines unseen by the model). By using the same 

metrics as that for the 2-class model, the overall results are 

summarized in Table 11. 

 

Table 11 - Final test results of the 3-class model 

 
 

 Overall, the 3-class model using the ANN algorithm has an 

accuracy of 94%, with 7% uncertainty. Its prediction accuracy 

for undesirable engine core sizes (h < 0.5”) is 75% (average of 

83% and 67%). The results are compared with the testing 

dataset, in Table 12. It shows three engines were misclassified. 

Comparing to the 2-class predictive model, the 3-class 

predictive model is less accurate because of insufficient training 

data. As shown in Table 4, there were only 17 engines with  

0.5” > h > 0.41” and 17 engines with h ≤ 0.41” available for 

training. 

 

CONCLUSIONS 
Machine-learning predictive models were developed for 

turbofan engine core-size prediction, using the database of two 

hundred manufactured engines and engines that were studied 

previously in NASA aeronautics projects. The 2-class 

predictive model is very accurate; it has an overall accuracy of 

98%, with 5% uncertainty. And it predicted unacceptable 

engine core sizes with 92% accuracy. The 3-class predictive 

model has an overall accuracy of 94%, with 7% uncertainty. It 

predicts undesirable engine core sizes with 75% accuracy.  

To further improve the accuracy (and reduce the 

uncertainty) of the 3-class predictive model, the database needs 

to be expanded. The 3-class model is more complex and 

requires more data for training. However, the limitation of 

publicly available engine data is a challenge to overcome. 

Overall, the results show that by bringing together sufficient 

(big) high quality data, robust machine-learning algorithms and 

automation, machine-learning-based predictive model can be 

an effective tool for engine core-size prediction, which would 

facilitate engine core architecture selection in the early stages 

of engine development. The promising results of this first study 

paves the way for further exploration of the use of machine 

learning for aircraft engine preliminary design. 
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Table 12 

  
Comparison of predicted results with testing dataset – Three-class model 

 

 
 
 
 

  

h ≥ 0.50” 0.5” > h > 0.41” h ≤ 0.41” ←  misclassification 
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Appendix A 
 

Engine database 
 

 h ≥ 0.50” 0.5” > h > 0.41” h ≤ 0.41” 
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Appendix A (cont’d) 

 

Engine database 
 

 
 

 h ≥ 0.50” 0.5” > h > 0.41” h ≤ 0.41” 
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Appendix A (cont’d) 

 

Engine database 

 

 
 

SFW – NASA Subsonic Fixed Wing project ERA – NASA Environmentally Responsible Aviation project AATT – NASA Advanced Air Transport Technology project 

h ≥ 0.50” 0.5” > h > 0.41” h ≤ 0.41” 


